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A principal finding in the food-caching literature is that species differences in hoarding propensity are

positively correlated with species differences in degree of adaptations to caching behaviour, such as

performance on spatial memory tasks and hippocampal volume. However, there are examples that do not

fit this pattern. We argue that these examples can be better understood by considering the phylogenetic

relatedness between species. We reconstruct the ancestral state for caching behaviour in corvids and assess

when transitions in caching behaviour occurred within the corvid phylogeny. Our analysis shows that the

common ancestor of all corvids was a moderate cacher. This result suggests that corvids followed a

bi-directional evolutionary trajectory in which caching was secondarily lost twice and there were at least

two independent transitions from moderate to specialized caching. The independent evolution of

specialized cachers in the two groups must, therefore, be a case of convergent evolution. This is exemplified

by the fact that specialized cachers show structurally different adaptations serving the same function to

intense caching, such as different pouches to transport food. Finally, we argue that convergent evolution

may have led to adaptations in memory and hippocampus that serve the same function but differ in design,

and that these different adaptations may explain the examples that do not fit the pattern predicted by the

adaptive specialization hypothesis.
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1. INTRODUCTION
A number of bird species cache food for later consumption

(Vander Wall 1990). It has been argued that food-caching

will only be an evolutionarily stable strategy if the cacher

employs a strategy that makes it more likely to recover its

own caches as opposed to the caches being recovered by

other individuals (Andersson & Krebs 1978; but see

Smulders 1998; Vander Wall & Jenkins 2003). One such

strategy is to remember the exact location of the caches.

Krebs (1990) argued that the increased visuo-spatial

demands of remembering the locations of thousands of

food caches might have resulted in an enlargement of the

hippocampus, an area of the brain that is known to play a

role in memory for cache locations (Sherry et al. 1989;

Smulders & DeVoogd 2000). The adaptive specialization

hypothesis, thus predicts that food-cachers should have

larger hippocampal volumes, relative to overall brain size,

than non-cachers. Comparative analyses across families or

sub-families of birds confirm that food-caching species

have larger relative hippocampal volumes than non-

cachers (Krebs et al. 1989; Sherry & Vaccarino 1989;

Garamszegi & Eens 2004).

Corvids show variation in caching behaviour, from

species that do not cache at all to others that are highly

dependent on their caches during periods of food short-

age. Concordantly, corvids show variation in adaptations

to food caching and recovery behaviour such as pouches

for transporting food. The variation in reliance on stored

food allows a further test of the adaptive specialization

hypothesis, namely that those species that are more reliant

on cached food and cache more intensively should have

more pronounced adaptations to food caching behaviour

than those that cache less intensively. Tests of this
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hypothesis that compare performance in spatial memory

tasks and hippocampal volume in species that show

variation in caching behaviour have led to mixed results,

ensuing a debate over the validity of the approach (e.g.

Bolhuis & Macphail 2001; Healy et al. 2005).

Part of the problem may lie in the fact that most studies

that test the adaptive specialization hypothesis implicitly

assume that the presence of an adaptation in one species is

the derived state and the absence of that adaptation in a

related species is the ancestral state. However, when

comparing species’ adaptations to current selection

pressures it is crucial to know the state of that trait in

the common ancestor. If the common ancestor showed the

trait, then it is the absence of the trait in extant species that

signifies an adaptation. Indeed, reverse evolution (loss of

derived traits), is much more prevalent than previously

assumed (Teotonio & Rose 2001; Wiens 2001; Porter &

Crandall 2003), a fact that is known as a result of the

development of phylogenetic techniques.

In this paper, we reconstruct the ancestral state of

caching in corvids. We then trace the evolutionary

transitions of caching behaviour over the phylogeny of

corvids and discuss the implications of the reconstruction

in relation to adapted traits of food-cachers.
2. MATERIAL AND METHODS
We follow Goodwin (1986) for the species included in the

family Corvidae. Information on caching behaviour was

obtained from the literature (see table 1). We only included

those corvid species for which information about their

caching behaviour was available. Only for three corvid species

have estimates been made about their caching propensity in

natural conditions (Balda et al. 1997). Western scrub-jays

cache considerably fewer pine seeds (6000) per season than

pinyon jays (22 000) or Clark’s nutcrackers (33 000).
q 2005 The Royal Society



Table 1. Caching category and reference for the species used in the analyses.

scientific name English name caching category reference

Cyanocitta cristata blue jay 3 Darleyhill & Johnson (1981)
Cyanocitta stelleri Steller’s jay 3 Balda & Kamil (2002)
Gymnorhinnus cyanocephalus pinyon jay 3 Balda & Kamil (1998)
Aphelocoma coerulescens Florida scrub-jay 2 Woolfenden & Fitzpatrick (1984)
Aphelocoma californica western scrub-jay 2 Balda & Kamil (1998)
Aphelocoma ultramarina grey-breasted jay 2 Balda & Kamil (1998)
Cyanocorax caeruleus azure jay 2 Sick (1993)
Cyanocorax cyanopogon white-naped jay 2 Sick (1993)
Cyanocorax dickeyi tufted jay 2 Goodwin (1986)
Calocitta formosa white throated magpie jay 1 E. Berg, personal communication
Perisoreus canadensis grey jay 3 Waite & Reeve (1992)
Perisoreus infaustus Siberian jay 3 V. Pravosudov, personal communication
Garrulus lanceolatus lanceolated jay 3 Turcek & Kelso (1968)
Garrulus glandarius Eurasian jay 3 Bossema (1979)
Garrulus lidthi Lidth’s jay 3 Turcek & Kelso (1968)
Nucifraga columbiana Clark’s nutcracker 3 Balda & Kamil (1998)
Nucifraga caryocatactes spotted Nutcracker 3 Turcek & Kelso (1968)
Cyanopica cyana azure winged magpie 2 Turcek (1961)
Pica pica magpie 2 Birkhead (1991)
Pica nuttallii yellow billed magpie 2 Bent (1964)
Urocissa caerulea Taiwan magpie 2 Goodwin (1986)
Urocissa flavirostris gold-billed magpie 2 Goodwin (1986)
Urocissa erythrorhyncha blue magpie 2 Goodwin (1986)
Cissa chinensis green Magpie 2 Vernon (1913)
Dendrocitta vagabunda rufous treepie 2 Goodwin (1986)
Podoces panderi Pander’s ground jay 2 Rustamov (1954)
Pyrrhocorax pyrrhocorax chough 2 Turner (1959)
Pyrrhocorax graculus Alpine chough 2 Strahm (1960)
Corvus monedula jackdaw 1 Henty (1975)
Corvus frugilegus rook 2 Simmons (1968)
Corvus corone carrion crow 2 Goodwin (1986)
Corvus splendens house crow 2 Goodwin (1986)
Corvus macrorhynchos large-billed crow 2 Goodwin (1986)
Corvus moneduloides New Caledonian crow 2 Hunt (2000)
Corvus albus pied crow 2 Goodwin (1986)
Corvus crassirostris thick-billed raven 2 Goodwin (1986)
Corvus caurinus northwestern crow 2 Saunders & Ydenberg (1995)
Corvus brachyrhynchos American crow 2 Cristol (2005)
Corvus ossifragus fish crow 2 McGowan, personal communication
Corvus cryptoleucos Chihuahuan raven 2 Goodwin (1986)
Corvus jamaicensis Jamaican crow 2 Goodwin (1986)
Corvus coronoides Australian raven 2 Rowley (1973)
Corvus orru Torresian crow 2 Goodwin (1986)
Corvus ruficollis brown necked raven 2 König (1920)
Corvus corax raven 2 Heinrich & Pepper (1998)
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However, scrub-jays also cache a number of other food types

and, therefore, the number of pine seeds cached is likely to be

an underestimate of the total number of items this species

caches (Curry et al. 2002). In the laboratory, there was no

difference between the three species and a fourth species, the

Mexican jay (Aphelocoma ultramarina, Bednekoff et al. 1997)

in caching intensity. Therefore, rather than describing

caching intensity as a continuous trait, most researchers

have used three categories for caching intensity (Healy &

Krebs 1992, 1996; Basil et al. 1996; Brodin & Lundborg

2003; Lucas et al. 2004). We define the three categories as

outlined in table 2. In this study, species were categorized as

specialized cacher only when there was explicit information

available about their caching behaviour being seasonal or

when they are dependent on their caches for part of the year.

In contrast to previous reports (Healy & Krebs 1992) we

classified the Alpine chough (Pyrrhocorax graculus) as a
Proc. R. Soc. B (2006)
moderate cacher (Strahm 1960; Goodwin 1986). Brodin &

Lundborg (2003) deemed the Rook (Corvus frugilegus) to be a

specialized cacher, however, we classify it as a moderate

cacher based on our definition of caching categories.

We used a phylogeny based on a compilation of smaller

phylogenies. As the basis for relationships between genera we

used the phylogeny by Hope (1989) which is based on

morphological characters, while for the within genus

affiliations we used various smaller phylogenies (Goodwin

1986; delos Monteros & Cracraft 1997; Cibois & Pasquet

1999; Saunders & Edwards 2000). Branch lengths between

genera were set at 3.4DT50H and within genera at 1.1DT50H

(Sibley & Ahlquist 1990; Bennett & Owens 2002).

We used the program MULTISTATE for the evolutionary

reconstruction of caching behaviour (Pagel 1997, 1999a,b).

MULTISTATE uses a continuous-time Markov model to

calculate a maximum likelihood estimate for the phylogenetic



Table 2. Definitions of the three categories of cachers.

specialized hide large numbers of items of predominantly one type of food and show a seasonal peak in caching intensity,
which coincides with availability of that food. Recover their caches often after long intervals and tend to
live in areas of high latitude and or altitude with strong seasonal availability of food

moderate cache throughout the year, they cache a variety of types of food and are never entirely dependent on their
caches for survival

non cache virtually never
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model applied. Hypotheses for models of evolution are tested

with likelihood ratio statistics. If the likelihood ratio for the

two hypotheses is larger than 2, then by convention the

hypotheses are considered significantly different (Edwards

1972). Our H0 assumed that forward and backward

transitions are equally likely and a direct transition from

specialized cacher to non-cacher, or vice versa, is not possible

but always passes through the intermediate state of moderate

cacher.

To test the most likely ancestral state for food caching

category we fixed the common ancestor of corvids at the three

possible states at a time and calculated the likelihood for each.

Additionally, we traced where in the phylogeny the major

changes in caching category took place by assessing the

likelihood for each of the categories at specific nodes within

the phylogeny.
3. RESULTS
The literature provided information on caching behaviour

for 46 species of corvids from 16 genera (table 1). Six

genera consisting of predominantly tropical species are not

represented in this study because of a paucity of data.

The model with restricted parameters (H0) does not

show a significantly lower likelihood than a non-restricted

model and, therefore, the H0 is preferred because it is the

simpler model (Pagel, MULTISTATE manual). When we left

the root free to take any of the three states, the

reconstruction suggests that, with a probability of 0.96,

the common ancestor of corvids was a moderate cacher.

To test whether the state of moderate cacher is

significantly preferred over the other states we fixed the

root at each of the states and calculated the likelihood for

each. When comparing the different states the log

likelihood ratio is O2 in favour of the ancestor being a

moderate cacher. We conclude, therefore, that the

common ancestor of the corvids was most likely a

moderate cacher.

The reconstruction of the common ancestor of the New

World jay species (node 2, see figure 1) showed that it was

a cacher, but there is no significant differentiation between

the state of moderate and specialized cacher. Similarly,

nodes 6–10 do not show a preference for a reconstruction

between moderate and specialized cachers and, therefore,

it is not possible to assign either of the two states to the

ancestors of three clades (namely the genera Nucifraga,

Perisoreus and Garrulus), which are exclusively specialized

cachers. However, the common ancestor of the genus

Corvus is unambiguously reconstructed as a moderate

cacher.

These results imply that the transition from moderate

cacher to specialized cacher occurred at least twice at

nodes 2 and 6, in which case several clades reversed to

moderate cachers again. Alternatively, the transition from

moderate to specialized cacher took place up to five times,
Proc. R. Soc. B (2006)
namely at branches leading toGymnorhinus and Cyanocitta

and at those leading to Nucifraga, Perisoreus and Garrulus.

The state of non-cacher evolved at least twice, once in the

clade leading to the white-throated magpie jay (Calocitta

formosa) and once in the clade leading to the jackdaw

(Corvus monedula).
4. DISCUSSION
This phylogenetic reconstruction strongly suggests that

the common ancestor of the corvids was a moderate

cacher. Although many extant corvid species are moderate

cachers, there are also some non-cachers and some

specialized cachers. Therefore, two opposite evolutionary

trajectories to caching behaviour have occurred within the

corvids. The first is an evolutionary specialization towards

a strong dependence on cached food resulting in highly

specialized species and this transition occurred at least

twice, and possibly five times independently within the

corvids. The second is the loss of caching behaviour and

this transition also occurred at least twice independently

within the corvids. Below we discuss what the conse-

quences are of these findings for the adaptive specializ-

ation hypothesis.

Adaptations underlying efficient cache recovery may be

too costly to maintain in those species that lost the

propensity to cache. For instance, maintaining an enlarged

hippocampus is presumably energetically costly because

brain tissue is metabolically expensive (Aiello & Wheeler

1995; Laughlin et al. 1998; Attwell & Laughlin 2001).

Selection pressures might favour a reduction in the

quantity of neural substrate, and thus non-cachers may

show reduced hippocampal volumes compared to their

caching counterparts. Evidence in support of this claim

comes from jackdaws, because these non-cachers have

relatively small hippocampal volumes (Healy & Krebs

1992).

Furthermore, adaptations may also be co-opted for

other tasks. The hippocampus is involved in other

functions than spatial memory alone (Day 2003) and it

has been suggested that the hippocampal formation might

serve both spatial and episodic memory ( Jefferey 2004).

Although the western scrub-jay does not have a particu-

larly accurate spatial memory compared to some other

corvid species (Balda & Kamil 1989; Kamil et al. 1994), it

has episodic-like memories of what was cached where and

when (Clayton & Dickinson 1998). Perhaps species that

cache perishable foods co-opted their hippocampus to

encode episodic-like memory, and thus keep track of when

items degrade.

The evolution into specialized caching has occurred

independently in the clade leading to the Clark’s

nutcracker and the clade leading to the pinyon jay. Both

species have evolved pouches to transport large numbers

of seeds to cache locations, however, the pouches differ
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Figure 1. Ancestral state reconstruction for caching categories in corvids using maximum likelihood. The squares represent the
most likely reconstruction of the caching category at that node. Numbered nodes are referred to in the text. Branch lengths are
not proportional to genetic distance.
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markedly. Nutcrackers have evolved a sublingual pouch

(Bock et al. 1973), whereas pinyon jays have evolved an

expandable oesophagus (Vander Wall & Balda 1981). In

much the same way as the two species have different

morphological adaptations, it is conceivable that the

increased intensity to cache resulted in an increased

capacity to remember the location of large amounts of

cached items, but the way this capacity was increased

differed between species. We develop this argument on

two levels: first, in terms of hippocampal specializations,

and second, in terms of memory performance.

Comparative brain studies focus on the volume of the

hippocampus as a measure of adaptation (Brodin &
Proc. R. Soc. B (2006)
Lundborg 2003 and references therein). Surprisingly the

pinyon jay has a relatively small hippocampus (Basil et al.

1996), given that it is a specialized cacher. However, there

is no inherent reason to focus on volume per se. Species

could differ in a number of other aspects of hippocampal

neuroanatomy such as the number or density of neurons

versus glial cells, dendrites per neuron, synaptic connec-

tions per neuron (Rogers 2004), as well as in differential

rates of recruitment, replacement or survival of new

neurons (Barnea & Nottebohm 1994, 1996; Hoshooley &

Sherry 2004). When behavioural specializations are

supported by neural adaptations, it need not result in

the same neural solutions in species that evolved the
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behavioural specialization by convergent evolution

(Nishikawa 2002). Thus, the pinyon jay may have evolved

a different solution for the increased demand on spatial

memory than the Clark’s nutcracker.

Similarly, if intense caching evolved independently in

two different lineages of corvids, then there is no a priori

reason to assume that those two lineages have developed

the same solution for increased memory performance.

Although pinyon jays and nutcrackers have excellent

memories for cache locations it is possible that the two

differ in the particular solution they use to perform such

memory tasks. If evolution has created different solutions

for solving the enhanced memory demands of intense

food-caching in pinyon jays and nutcrackers, then the two

species might show different weaknesses when tested on

tasks that tap into different aspects of memory.

Consider two comparative studies of memory perform-

ance in corvids. In one study, Clark’s nutcrackers

(specialized cacher), pinyon jays (specialized cacher),

scrub-jays (moderate cacher) and Mexican jays (moderate

cacher) were compared on an operant spatial delayed non-

matching to sample (DNMTS) task using a touch screen

(Olson et al. 1995). Although nutcrackers outperformed

the other species as expected, surprisingly pinyon jays

were no better at this task than the other two jay species.

Despite being a specialized cacher like the Clark’s

nutcracker, the pinyon jay’s performance on this task

was more similar to its close relatives, the scrub-jays and

Mexican jays. Performance on the operant DNMTS task

is determined in part by proactive interference from

preceding trials. There are two different aspects of

memory that may affect proactive interference in spatial

DNMTS tasks. One is perseverance, and the second is

memory accuracy. Although pinyon jays and nutcrackers

show similar perseverance of spatial memory (Bednekoff

et al. 1997), there may be a species difference in memory

accuracy. Pinyon jays tend to cache in clusters, which

allows them to use a non-mnemonic strategy for cache

recovery, such as area-restricted search, in addition to

spatial memory.

Balda & Kamil (1989) allowed pinyon jays and Clark’s

nutcrackers to cache pine nuts in two conditions, one of

which allowed cluster caching and the other did not. As

one might predict, pinyon jays were more accurate at

recovery of the clustered caches. The surprising result was

that the pinyon jays were just as accurate as the

nutcrackers in the non-clustered caches condition.

However, both species only made eight caches, which is

much smaller than observed in the wild and also much

smaller than the number of trials in a DNMTS task.

Perhaps the pinyon jays would have performed less well if

they had been required to cache a lot more items,

particularly if they are more susceptible to proactive

interference than nutcrackers on cache recovery and on

subsequent trials in the DNMTS task. This prediction

could be tested directly by comparing the spatial memory

accuracy of nutcrackers and pinyon jays when they have

cached large numbers of items.

In a second study, Gould-Beierle (2000) compared

performance on a radial maze in Clark’s nutcrackers,

pinyon jays, western scrub-jays and jackdaws. The Clark’s

nutcracker’s performance was no better that that of the

non-caching jackdaw, while both were outperformed by

the pinyon jay and scrub-jay. As in the previous example,
Proc. R. Soc. B (2006)
the species perform more similar to their close relatives

than to the species most similar in degree of caching.

Perhaps these surprising results can be explained in terms

of the species’ social structure. Both jay species often

encounter cache pilferage by conspecifics, while this is less

likely in the more solitary nutcracker. Possibly such

pilferage has elicited an evolutionarily arms race resulting

in strategies for both pilfering and cache protection

(Bugnyar & Kotrschal 2002). For instance, pinyon jays

and Mexican jays have excellent spatial observational

memory for caches made by other individuals, which is not

the case in Clark’s nutcracker (Bednekoff & Balda

1996a,b). Nutcrackers often return to earlier inspected

sites, which they had found emptied while jays do not

return. Perhaps one reason why the pinyon jays and scrub-

jays do not revisit earlier inspected cache sites is because

they are adapted to cache pilferage.

In conclusion, we showed that the common ancestor of

corvids was a cacher. Therefore, it seems likely that all

extant corvid species evolved from an ancestor that

showed the basic adaptations to caching. Within the

corvids some species developed into specialized cachers

and these species show even further enhanced adaptations

to caching behaviour, such as pouches for transportation.

Specialized caching evolved at least twice independently

within corvids, and thus the associated adaptations are the

result of convergent evolution of behaviour rather than of

common descent. Therefore, although the adaptations

serve the same functions they may show differences in

design and in particular aspects of their performance. We

argue that this does not apply only to morphological traits

but also to neurological and cognitive traits. When

comparing species on neurological and/or cognitive traits,

one needs to take their evolutionary history into account.
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